
Build This Garage Door Keypad

By Reinhard Metz and David Wickliff

• No AC required - Self-powered from operator !

• More secure than commercial alternatives !

• Useful for other applications as well!

In this article we show you how to build an inexpensive keypad secure entry
system for your garage door. In addition to the convenience of providing keyless
home entry for your kids, you’ll find it usefull in many other cirumstances - going
out for a bike ride, working in the back yard, etc.

It's advantage over the commercially available units is that it is self-powered
from the two wire relay circuit that already exists with most installed openers - no
battery, no separate 110 volt A.C. or inconvenient outlet transformer is required!
It’s also designed to be more secure than conventional keyless entry systems. In
addition to the added convenience of this handy device, it’s another excellent
opportunity to learn about the popular PIC microcontroller and serial EEPROM
devices, which are at the heart of the unit.

Functional Overview
The keypad operation is extremely simple: To program an entry code, a program
button is pressed inside the unit (normally out of reach inside the garage), and a
key sequence (of up to 127 digits) is entered, followed by the # sign. The unit
stores these, and access is allowed (by operation of a relay) when the same
sequence, again terminated by the # sign, is entered. Additional security is
provided by time-outs. Furthermore, only the keypad is located outside,
connected to the electronics by a ribbon cable. Thus a potential intruder is
prohibited from prying the unit off the wall and shorting the two wires going to the
door operator to gain access, as is possible with some of the commercial units or
key switches.

Design Overview
Four main components constitute the essentials of the design: A PIC 16C54
microcontroller for the logic, a 93AA46 serial EEPROM for access code storage,
the keypad for input entry, and a power circuit. Figure 1 shows the schematic
diagram. The PIC microcontroller scans the program button and keypad via eight
I/O leads, pulled up by the resistor array R1. Key presses are detected by the

microcontroller as low input signals in a scanning process described later in the
firmware section.

The PIC connects to the memory device with three leads. The serial EEPROM
has a very simple and elegant operation, which consists of a sequence of serial
control, addressing, and data I/O operations, as depicted in timing diagrams
shown in figure 2.

The self-powering aspect of the design is provided by rectifier BR1, which
rectifies what typically appears as an AC or DC voltage from 10 to 24 volts from
the garage door opener. Typically, the opener circuit works similar to the partial
schematic shown in figure 3. Normally, the opener is activated by shorting the
control leads, which energizes a relay or circuit in the opener. The trick in this
unit is to rectify and use some of the power available at the two control wires
without energizing the relay. This is easy given the low power requirements of
the PIC device. Then, to energize the opener, a relay in the keypad unit shorts
the control leads for one second, during which time the PIC, memory, and relay
circuits are operated from energy stored in filter capacitor C1. Finally, IC3
regulates the filtered power to 5 volts for the logic. While many, especially older
installed garage door openers will work with this power scheme, some newer
models may not. In that event, a pair of jumpers may be removed from the relay
contact and the contact wired directly to the door operating circuit, and the circuit
may then be powered from an auxiliary wall transformer.

Firmware Overview
The software for the garage door keypad system is written in PIC assembly
language and is programmed into the on-chip EEPROM of the microcontroller.
Both the source code file and a pre-assembled hex file for programming a
microcontroller are available. A pre-programmed PIC 16C54 microcontroller is
also available.

The main loop
Various program variables used by the software are configured immediately after
the microcontroller is powered on. After this initialization the microcontroller
loops in the main software loop illustrated in the flow chart of Figure 4.

The first step of the main loop is to configure the input and output port pins of
the microcontroller. This port configuration was cleared due to either a power-on
reset or, as we will see later, a watchdog reset.

Next the keypad is sampled for any new key presses. A key press is considered
valid if the same key value is sampled on two consecutive passes of the main
loop. This multiple sampling requirement ensures that only one key press is
registered even though the keypad switch contacts may bounce on closure and

release. The value of a valid key press is flagged and stored for later use by the
state machine software discussed in the next section.

The next step of the main loop is to decrement a keypad entry timeout count.
Each pass of the main loop this counter is decremented by one. If the count
ever reaches zero, the state machine software is reset to the start of comparing
keypad presses. However, whenever a key is pressed this counter is re-
initialized to a large value. Operated in this way, the keypad counter will clear
any partial key sequences entered that are not completed within approximately
60 seconds (e.g. the small neighbor kid playing with the keypad or a basketball
hit). So, the next time someone enters a valid key sequence it is correctly
recognized.

After maintaining the key entry timeout, the next step of the main loop is to run
the state machine software. As we will see in the next section, the state machine
software is where most of keypad lock’s behavior is implemented.

Finally, the on-chip watch dog timer of the microcontroller is used at the end of
the main loop to reset back to the beginning of the loop. This timer will cause a
reset of the microcontroller when it is allowed to expire. Normally, the software
would frequently clear the watch dog timer such that it is not allowed to expire.
However, at the end of the main loop a SLEEP instruction is executed and the
microcontroller stops executing instructions. The watch dog timer will expire
approximately 18ms later and reset the microcontroller back to the beginning of
the main loop.

The software state machine
Most of the software is organized using a software programming technique
called the software state machine. First you describe your programming problem
with a traditional state diagram. Next you write small software code segments
that perform the actions of each state of the diagram. Finally, you initialize a
variable which will represent the current state of the state machine and you
periodically execute the segment of software that corresponds to the current
state. This technique allows you to organize and breakdown a large problem
into smaller and more manageable pieces.

A variable in the PIC's RAM is used to represent the current state of the state
machine. This variable is simply called "State" in the code. The main loop
software uses the current value of "State" to determine which of the state
machine software segments to execute on each iteration of the loop. A segment
could choose to change the value of the "State" variable, thereby forcing the
state machine into a different state.

Figure 5 illustrates the state diagram for the garage door keypad. A power-on
reset starts the state machine off in the COMPARE DIGITS state. In the

COMPARE DIGITS state, entered keys are compared with the series of key
values stored in the EEPROM. The state machine continues to stay in the
COMPARE DIGITS state as long as the entered keys match the EEPROM's key
values. If a "#" key is entered and it matches the next stored key value, then the
user has entered the correct code and the state machine advances to the
UNLOCK state. If ever an entered key does not match the next key stored in
EEPROM, then the state machine advances to the LOCKOUT state.

The UNLOCK state simply activates the relay for approximately 1 second -
opening or closing the garage door. The LOCKOUT state discards entered keys
until a "#" is entered. In this way, the potential intruder is not alerted that the key
sequence that he/she is entering has stopped matching the stored EEPROM
sequence.

If the PROGRAM button is pressed in any of the other states, the STORE
DIGITS state is entered. In this state, entered keys are sequentially stored into
the EEPROM until a "#" key is entered.

The software segments that perform each state generally should not loop within
themselves, but perform the desired action only once and exit. For example, the
code for the STORE DIGITS segment stores only one digit at a time.

Listing 1 shows the segment of PIC assembly software that implements the
STORE DIGITS state. Figure 6 shows the flow chart for this segment of
software.

The STORE DIGITS state software segment as well as the other state software
make use of a number of support subroutines for blinking the LED (BlinkLED
and WinkLED), reading the EEPROM (EEPRead), writing the EEPROM
(EEPWrite), and delaying for a specified period of time (Delay). See the source
code file for details.

Fig. 4. The flow chart for the main loop.

INITIALIZE PORTS

POWER-ON RESET

EXECUTE THE STATE CODE
SPECIFIED BY THE

CURRENT STATE VARIABLE

UPDATE THE ENTRY
TIMEOUT

SLEEP UNTIL THE
WATCHDOG TIMES OUT

SCAN THE KEYPAD

INITIALIZE VARIABLES

WATCHDOG RESET

Fig. 5. The state diagram for the software state machine.

STORE
DIGITS

COMPARE
DIGITS

ERROR

LOCKOUT
 UNLOCK

“#” KEY PRESSED

GREATER THAN 127
DIGITS ENTERED

KEY DOES NOT
MATCH NEXT
EEPROM VALUE

“PROGRAM” KEY
PRESSED

POWER-ON
RESET

“#” KEY PRESSED

“#” KEY PRESSED

UNLOCK
DONE

Fig. 6 - The flow chart for the STORE STATE.

NO

UPDATE STATE VARIABLE
TO THE “ERROR” STATE

WINK THE LED

STORE THE KEY VALUE IN
EEPROM

START

DONE

HAS A KEY BEEN
PRESSED?

IS IT THE
“PROGRAM” KEY?

IS IT THE “ENTER”
KEY?

IS THE KEY
SEQUENCE TOO

LONG?

UPDATE STATE VARIABLE
TO THE “COMPARE DIGITS”

STATE

UPDATE STATE VARIABLE
TO THE “STORE DIGITS”

STATE AND RESTART THE
SEQUENCE

WINK THE LED

YES

NO

YES

YES

YES

NO

NO

LISTING 1

;---
StoreDigits
; State Code

; If there is a key press:

btfss KeyStatus,KeyEvent
goto StoreDigitsDone

bcf KeyStatus,KeyEvent ; Clear the flag

call WinkLED ; Wink the LED

movf Key,W ; If this is the "PROGRAM" key, then
xorlw ProgramKey
btfss STATUS,Z
goto StoreDigits0

movlw SStoreDigits ; restart the StoreDigits state
movwf State
movlw MaxKeyCount+1
movwf KeyCount
goto StoreDigitsDone

StoreDigits0
call EEPWriteEnable ; Enable EEPROM writes

movf Key,W ; Store the key value
movwf EEPData
movf KeyCount,W
movwf EEPAddr
call EEPWrite

call EEPWriteDisable ; Disable EEPROM writes

movf Key,W ; If this is the "ENTER" key, then
xorlw EnterKey
btfss STATUS,Z
goto StoreDigits1

call WinkLED ; wink the LED again

movlw SCompareDigits ; begin and go to
movwf State ; the CompareDigits state
movlw MaxKeyCount+1
movwf KeyCount

goto StoreDigitsDone

StoreDigits1
decfsz KeyCount,F ; If there are more than the maximum
goto StoreDigitsDone ; number of keys entered, then

movlw SStoreError ; go to the Error state
movwf State

StoreDigitsDone
sleep
goto Begin ; (Not executed by 16c5x type of devices)

Construction

Circuit board artwork is shown in Figure 7, if you should choose to make your
own PC boards. Begin assembly by installing all board mounted components,
carefully checking resistor values and component orientations. Temporarily
connect the keyboard, and if a bench power supply is available, apply 10 to 24
volts through a 1K resistor in series to the circuit power input. Push the program
button, and enter a short digit sequence, followed by the # sign. Re-enter the
same sequence, again followed by “#”. You should hear the relay operate for
about one second. An LED (LED1) may be optionally installed, along with R3, to
indicate button presses and successful operation of the relay.

Installation

If you use the specified keyboard, prepare for installation by drilling four small
corner holes matching the keyboard, and create a slot for the ribbon cable by
sawing or drilling a series of holes. Install the keyboard with a bead of clear
silicon rubber inside the back perimeter. Run the ribbon cable through the jam
inside the garage. Connect it to the circuit board and mount the circuit board
inside the garage as desired. Connect the two wires from the relay output/power
input to the opener operating contacts or in parallel with the existing inside
garage door operating button. If your unit requires auxiliary power, leave out the
two jumpers on the board, and connect the relay contacts separately to the door
operating circuit, and apply power to the board power input from a wall
transformer that supplies from 10 to 24 volts, AC or DC.

Other Applications

You can easily use the keypad for keyless operation in a variety of other
applications. If they are not amenable to the powered relay technique applied in
the garage door case, then you can simply leave out the jumpers and power the
board from a DC or AC source from 10 to 24 volts. Less than 1 milliamp of
current is required.

